Lincoln Things Network sponsored by Yesway


Lincoln Things Network  Sponsorship

What is the Things Network

The Things Network is a worldwide crowd funded Internet Of Things Network, which started in Amsterdam.

It consists of sensors, such as air quality sensors that transmit data wirelessly via ‘Gateway’ devices to the Internet Cloud.

It is rapidly expanding around the world, including the UK.

Why do we need this network?

The world is undergoing rapid change in the world of work, and it has been predicted that many jobs will become automated in the coming years.

The Internet Of Things, or IOT for short, along with Virtual Reality & 3D Printing  is part of this new industrial revolution.

It is therefore vitally important that we educate the current and future generations quickly, so we don’t get left behind as a nation.

The Things Network helps educate people, and lets businesses cost effectively develop new IOT products.

Where DoesThe Lincoln Network Cover

The Things Network is based on a wireless technology called LoraWAN.

As with all wireless technologies LoraWAN, which the Things Network runs on is range limited.

One of the great features of LoraWAN technology is that the signal can travel a long distance, using low power.

However as with all wireless technologies, buildings and natural objects in ‘line of sight’, will reduce the signal range.

The Things Network uses devices called ‘Gateways’ to receive the signals transmitted wirelessly from the remote sensors, and puts the data onto the web.

Currently the Lincoln Things Network has planned to install one Gateway near central Lincoln.

This should cover a large area of the City of Lincoln, but other additional Gateways may well be necessary, due to objects, reducing the signal coverage.

When will the Network be live

The components for the first Gateway device for the Lincoln Network has been ordered, and the plan is to go live by December 20th in the Lincoln area.

As the Things Network is eseentially a voluntary community effort, we welcome help from schools and local businesses.

Please get involved, as any help is appreciated.

Who is behind the Lincoln things Network

The Lincoln Things Network was initiated by Craig Miles, who can be contacted via the community page at

Alternatively he can be contacted via his personal website at

Security & Emergency Monitoring


  • Explosive & Hazardous Gases
  • Perimeter Access Control
  • Presence of Liquids
  • Radiation Level Monitoring

The above examples are some of the applications of wireless IOT monitoring possibilities.

For help with researching & implementing remote monitoring solutions to improve your business, get in touch.


Smart Metering

IOTThe Internet of things can monitor the following variables remotely using wireless sensors.

Wireless technologies such as LORA  provide long range low bandwidth communication of the data, back to the ‘gateway’. The gateway is the device that puts the data onto the internet cloud.

Some things that Smart Metering can monitor include:-

  • Smart grids
  • Fuel tank levels, such as amount of fuel oil used over a period of time.
  • Photo Voltaic (Solar) installations.
  • Water flow, such as for billing domestic & industrial customers.
  • Calculation of stock in a silo, for audit & ordering purposes


(c) 2016 Craig Miles @ Yesway Ltd  #acraigmiles


Smart Water Monitoring


internet of things

Smart Water Monitoring encompasses a number of possible solutions.

Wireless IOT (Internet of Things) technology can monitor the following:-

  • Monitoring of Potable water, such as water quality, flow rate & leak monitoring
  • Chemical leakage detection in rivers
  • Remote monitoring of water quality & safety in Swimming pools
  • Pollution levels in the Sea
  • Water leaks in pipes
  • Flooding of river banks

The data is collected in real time, and can be used to automate counter measures using cloud based processing.


Smart Water Monitoring encompasses a number of possible solutions. Click To Tweet

We can help you research & implement practical solutions that work for your business. Get in touch!


Smart Environment


Smart Environment

The ‘Smart Environment’ means the use of low power wireless sensors to detect changing variables in the environment.

There are three distinct stages of a Smart Environment system, which will be considered in terms of INPUT-PROCESS-OUTPUT.

The input stage is concerned with the gathering of the data source, and getting it to the process part of the system.

In terms of a typical LPWAN, or Low Power Wide Area Network system this might consist of a ‘sensor node’ that measures an environmental parameter, such as the ‘Ph’ of the soil in a field.

The sensor node gathers data and the data is transmitted via a suitable Low Power, Narrow Bandwidth wireless technology, such as Lorawan, Weightless or Sigfox.

At the receiving end of the transmitted data, the data is received by a device called a ‘Gateway’. The job of the gateway is to receive the wireless data signal, and put it onto the internet.

The sensor node, Narrow band Wireless Link, and Gateway device, can all be considered to be part of the INPUT section of the system.

The PROCESS part of the system occurs online, and is where software can be used to make smart automated decisions relating to the environment, based on analysis of the available data received from the INPUT section of the system.

An example of an automated decision, might be a vending machine that sends data onto the internet reporting that the machine is out of salt and vinegar crisps.

The online software would then logically decide a course of action, based on the received data. This is the PROCESS section, capable of automatically carrying out decisions that are normally done by human beings (clerical workers).

The OUTPUT section carries out an instruction, based on the decisions made by the online software, in the cloud, which is based on data from the INPUT section.

In this vending machine example the received data could notify a mobile delivery driver on a screen in his vehicle, to go to the machine and restock it (with salt and vinegar crisps, in this case).

The system could also automatically order new stock, as and when necessary from the crisp manufacturer.

Parameters that could also be monitored and analysed are, which products are the most popular, and if data is sent in real time, what products sell at what time of the day.

Knowing the time of day that a product sells can help marketing departments determine the socio-economic & demographic profiles of users,

How could marketers use this information you might wonder?

If the vending machine was located at a swimming pool, then data from the swimming pools website on class times, could be combined with product purchase data from the vending machine at the pool, to determine what products were most popular when the ‘Women Only’ swim session was on for instance.

Another possible data source could include ticket type sold (adult, child, senior citizen).



Some other uses of Smart Environment systems include the following examples:-

  • Forest fire detection
  • Early detection of earthquakes
  • Remote Snow level monitoring
  • Air pollution monitoring
  • Landslide & Avalanche protection

This article will be expanded shortly, when we get some more time.

If you would like help with any of the above technologies, get in touch. We are multi-skilled engineers with experience in the marine, land industrial & aerospace industries.

The 'Smart Environment' means the use of low power wireless sensors to detect changing variables in the environment Click To Tweet


Author Twitter Name: @acraigmiles



Smart Cities

smart cities

Things that the Internet of Things can measure around future ‘Smart Cities’ using low power wireless sensors:-

  • Waste Management
  • Smart Roads
  • Smart Parking, ensuring best use of limited space.
  • Structural Health, such as changes in length of bridge wires on a suspension bridge.
  • Mapping Urban Noise pollution. This affects human quality of life, and can affect wildlife as well
  • Smartphone detection.
  • Electromagnetic Field Levels, caused by power lines, radio transmitters etc.
  • Traffic congestion. Smarter traffic management solutions, based on real time data.
  • Smart lighting, such as street lights that go off and one depending on whether they are actually needed at the time.
Things that the Internet of Things can measure around future 'Smart Cities' using low power wireless sensors:- Click To Tweet
Smart cities
smart cities


Retrofitting the Internet of Things to Industry

Things to Consider When Retrofitting the Internet of Things to Existing Industrial Equipment


The Internet of Things, or IOT for short is already known to the public through innovative products, such as body worn fitness monitors, that record and upload data to the internet.

In the industrial sectors, such as manufacturing, new systems are being developed to replace existing infrastructure, to improve efficiency.

However, what about perfectly good existing equipment that you, as a business, do not want to replace. The answer is to retrofit equipment, to make it ‘Smart’.

It is convenient to break down the IOT process in terms of:-




Therefore retrofitting the Internet of Things….tb continued



This is the first of our videos on retrofitting the Internet of Things to existing industries, such as factories, agriculture and cities.

Internet of Things
Retrofitting the Internet of Things to Industry

Product Design for Wireless Marine Monitoring

smart product design
Article about casing design considerations for marine environments. Click To Tweet

Developing environmental monitoring systems for the marine environment has additional challenges when compared to designing systems for inland shore side operation.

One reason is the fact that the sea is salty. This means that the casings for the monitoring equipment must not only be watertight, but also be made from a material that will not easily corrode, such as marine grade stainless steel, or plastic (a good resource for more information on marine plastics is here

Ingress Protection (IP) Ratings of ‘off the shelf’ casings should be checked and considered before purchasing an pre-made solution. For example an IP54 gives: Limited protection against dust ingress.
(no harmful deposit), and Protected against splash water from any direction.

Therefore IP54 would not be suitable for a device or product that is going to be submerged for periods of time. IP68 which gives: Totally protected against dust ingress, and Protected against long, durable periods of immersion in water.

marine product design

Choosing to have a custom made casing for your product has a number of advantages:

Firstly, with product branding. Having a custom designed and manufactured casing distinguishes and differentiates your product from the competition, and a well designed casing can give your product competitive advantage.

Secondly, by designing a custom made case you can create a more efficient product.

The reason for this is:

a) Space and weight saving can be achieved by eliminating extra space that is available in a pre-designed casing. This could well have cost savings, due to less materials being used in its manufacture. This is especially true in mass production, due to production economies of scale factors.

b) Greater product usability. The user experience, (or UX experience) is important in all products, but particularly in the marine environment where harsh conditions demand easy handling and operation in challenging conditions. A custom casing can be made easier to hold (for portable equipment), and not drop overboard!

c) Product efficiency. By designing a custom enclosure, it can be made to further protect the electronics within, from dust and moisture.

For example using inspiration from nature, a product casing could incorporate a sloping top (a bit like a pine tree shape, so that water naturally runs down the sides.

This design would have practical advantage over an off the shelf rectangle casing, due to the fact that conventional casings rely on gaskets to seal between the lid and the main casing body. The gaskets can fail due to the harsh environment, and even changes in air pressure, which can create a vacuum or pressure differential between the inside of the case and the outside environment.

Another consideration that needs to be taken into account when developing products for the marine environment is Maintainability.

All electronic parts have what is known as an MTBF, or Mean Time Between Failure. This is a statement by the electronic component, or system manufacturers of  how long their product is likely to last. Therefore the product design should take the MTBF into account.

By analysing the MTBF data for all parts of the design, the ‘weak link’ can be identified. This will be the component with the lowest MTBF.

Once the component, or system part with the lowest MTBF has been identified (by using manufacturers data), the criticality of that component should be considered.

For example, if the component part in question failed, what effect would it have on the operation of the whole system?

A failed indicator lamp may not affect the operation of the equipment, however a failed thyristor or Micro-controller board would stop the design from functioning.

There is always a balance to be struck between design reliability and cost.

For example, you could design a kettle to last 100 years without maintenance, but the cost would be to great for most consumers, and it would be a financial failure for the manufacturer.

I would suggest that the first question to ask is, how long is the equipment that is being designed going to be deployed for?

Article to be continued, and expanded in near future (when I have the time 🙂

(C) 2016 Craig Miles, All Rights Reserved.

Twitter: acraigmiles

Star-Delta Starter Adaption for The Internet Of Things

star delta starter modifications for IOT
star-delta starter

Star-Delta Starters are used to start larger ac induction motors used in industries,such as Manufacturing and Marine.

Like ‘Direct Online’ (DOL) starters, which are also used for ac induction motors starting (though smaller, lower current motors), Star-Delta starters only turn the motor on and off at a single speed.

With the growth in the internet of things, industries, such as Mining and Marine Click To Tweet (who use Star-Delta starter systems) need to consider how to keep their business efficiency as good as their competitors.

Competitors are always seeking competitive advantage. This can be achieved through cost and efficiency savings, and IOT (Internet of Things) connectivity allows close monitoring of system processes, and so called ‘machine learning’.

In the case of a Star-Delta motor starter, there area number of outputs that we may wish to measure using sensors.

Firstly, the current being drawn by the Star-Delta starter. This includes both the starting (or In rush) current, and the FLC (Full Load Current).

Monitoring of the Full Load Current (FLC) for example is useful because an increase in current been drawn through a phase, might be due a break in one of the other phases. This causes what is known as ‘Single Phasing’ to occur.

Single Phasing can potentially damage both the motor windings and cabling from the starter to the motor, due to current doubling in the two phases still connected.

The motor windings for example, would not be designed to handle the excess current flowing through the two (still) connected ones, potentially causing damage, expense and downtime.

The Star-Delta Starter normally has a current limiting device installed, called an Over Current Relay (OCR).

There are three types of OCR, Electronic, Magnetic, and Thermal.

The OCR will detect higher than normal currents, caused for example by ‘Single Phasing’.

When single phasing is detected by the OCR, it will disconnect the three phase supply going to the induction motor (after short delay, dependent on over current size).

To be continued………

(c) 2016 Craig Miles




Challenge of Installing IOT Sensor Equipment in Explosion Proof Areas

Challenge of Installing IOT Sensor Equipment in Explosion Proof Areas, by Craig Miles

IOT, or the Internet of Things is already changing the way that businesses function, and this is set to explode in the forthcoming years.

IOT is all about improving business efficiency by collecting information (via sensors) about the physical world (Inputs such as: temperature, pressure, location etc), and then using this data to trigger an automated action, based on the data.

Installing the sensors that provide the ‘inputs’ to your IOT system is usually fairly straightforward in most environments, however potentially explosive environments require special considerations.

When installing any electrical or electronic device in a potentially explosive environment, the device must be rated as ‘EX’ , also known as ‘intrinsically safe’.

Intrinsically safe electrical equipment is available as components such as electric fans, cable glands, and hand-held two-way radios.

This is a business opportunity for IOT device manufacturers to create ‘EX’ rated sensors.

The main thing to consider at all times when designing your install, is will my equipment cause a spark, potentially causing an explosion.

First consider your sensor itself. An example is a sensor located in a ships battery room to monitor and report on voltage and specific gravity of the lead acid batteries, used for emergency backup.

The sensor you use to collect the information MUST be EX rated / intrinsically safe, to be compliant.

The next consideration is how you are going to get the data from the sensor ‘out’ of the potentially explosive area and to the location where the data is processed.

Wireless technologies such as Zigbee, WIFI and LORA could be used, but by definition produce RF radiation which could potentially cause an explosion. Therefore it is crucial that only equipment that is EX rated is used.

In the case of environments hostile to RF (Radio Frequency) Radio Waves, such as ships, oil rigs and other buildings high metal content, an alternative would be a fixed wired solution.

When using wired methods to transmit sensor data, the cable glanding must be designed so that the explosive area remains gas tight, to prevent explosive gases interacting with electrical components outside the intrinsically safe area.

Glands for this purpose exist, and can be found online.

To conclude, the key to installing the Internet of Things (IOT) in a potentially explosive environment is to ensure that every piece of IOT equipment that is installed is EX rated to prevent explosion risks.

You also need to think about and ensure that any wiring that leaves the intrinsically safe / explosive area goes through properly rated EX glands, to ensure safety.

The author is Craig Miles (me) and I can be contacted via

All content is copyright, and copying and all rights are reserved (c) Craig Miles 2015