Tag smart factories

industry 4.0

Smart Factories Using LoraWAN

Condition Monitoring

Smart factories improve automation and efficiency compared to traditional factories. LoraWAN is one type of LPWAN wireless technology.

Efficiency is increased both through process decisions being made without human intervention.

Efficiency is also increased by using sensor data to monitor the condition of machinery, such as three-phase induction motors.

Monitoring of induction motors, can include vibration sensors, which monitor the condition of the rotor bearings. A worn  bearing will cause increased running friction, which can be monitored by attaching external vibration sensors to the motor casing.

Other conditions that can be monitored on a factory induction motor, are rotor speed, Stator winding temperature, single phasing faults,  current drawn and voltage levels.

Other uses of smart factory monitoring systems, are the monitoring of the production process.

Smart Factory  Buildings

The factory building that houses the operational machinery, also forms part of  smart factories.

Automated temperature control has been around for years, and is also used in almost every home too. Its called an automatic thermostat!

Smart buildings can adapt the heating control automatically, by sensing where heat is needed in the factory building.

For example sensors, can detect if people are working in a particular section of the factory.

The sensor data is used to only heat the parts of the factory that require it.

The use of sensors can also be used to switch lighting on or off, depending on actual real-life demand for light, within sections of the factory.

Smart control of lighting and heating systems within the factory environment, reduces the variable costs of the the business operation.

Wireless Connectivity Options

Various wireless technologies can be used for wireless smart factory connectivity.

The choice will depend on a number of factors such as communication range needed, data rate and bandwidth requirements.

Technologies that can be used include:

Bluetooth

LoraWAN

Zigbee

Wifi

Yesway is based in Lincoln, UK.

Our phone number is +44 (01522) 740818.

This article was written by Craig Miles of Yesway Ltd.

Induction Motor

Preventive Maintenance For Electric Motors

Preventative Maintenance

Preventive maintenance programmes  are the key to reliable, long-life operation of electric motors.
Whilst AC Induction Motors are particularly reliable in service, almost all electrical equipment requires periodic planned inspection and maintenance. Planned preventive maintenance ensures electrical motors, and starters are kept in good working condition at all times. This is critical for businesses that rely on electric motors. A scheduled routine of motor inspection should be carried out throughout the motor’s life. Periodic motor inspection helps prevent serious damage to motors by locating potential problems early.

Periodic Inspections

Planned electric motor maintenance programmes are designed to help prevent breakdowns, rather than having to repair motors after a breakdown. In industrial operations, unscheduled stoppage of production or long repair shutdowns is expensive, and in marine shipping environments, a potential safety issue. Periodic inspections of motors are therefore necessary to ensure best operational reliability.

Preventative maintenance programmes require detailed checks to be effective. All motors onsite (factory, ship etc) should be given their own individual identification (ID) number and have a record log. The record log is usually computerised these days. The motor records kept should identify the motor, brand, inspection dates and descriptions of any repairs previously carried out. By record keeping, the cause of any previous breakdowns can help indicate the cause of any future problems that might occur.

All preventative maintenance programmes should refer to the equipment manufacturer’s technical documentation prior to performing equipment checks.

There are simple routine maintenance checks that can be applied to three phase induction motors, which help ensure a long service life to a motor. 

The Simple checks that can be carried out, include a review of the service history, noise and vibration inspections. Previous noise issues could for example be due to motor single phasing. Previous vibration may have been due to worn bearings, which allow the Stator to turn. Other checks include visual inspections (damage and burning), windings tests (insulation resistance & continuity), brush and commutator maintenance (dc motors) and bearings and lubrication.

Inspection frequency and the degree of inspection detail may vary depending on such factors as the critical nature of the motor, it’s function and the motor’s operating environment. An inspection schedule, therefore, must be flexible and adapted to the needs of each industrial or marine environment.

A modern approach to electric motor preventative maintenance is to connect the motor to the Internet cloud, or local company server network. This can form part of your ongoing business improvement process.

Motor performance parameters such as phase current, rotational speed, heat and vibration, can all be recorded using sensors.

The sensors are attached either directly to the motor, in the case of vibration sensing, or connected to the power supply feed cable.

Wireless technologies such as LoraWAN can be used to connect remote machinery to the Internet of Things Cloud.

This is also known as IOT or IIOT.

(c) Craig Miles 2019.  craigmiles.co.uk & yesway Ltd

For bespoke electrical training for business & individuals with Craig, call Yesway on  +44 (01522) 740818

Retrofitting the Internet of Things to Industry

Things to Consider When Retrofitting the Internet of Things to Existing Industrial Equipment

The Internet of Things or IoT for short is already known to the public through innovative products, such as body-worn fitness monitors, that record and upload data to the internet.

In the industrial sectors, such as manufacturing, new systems are being developed to replace existing infrastructure, to improve efficiency.

However, what about perfectly good existing equipment that you, as a business, do not want to replace. The answer is to retrofit equipment, to make it ‘Smart’.

It is convenient to break down the IOT process in terms of:-

Input-Process-Output

Therefore retrofitting the Internet of Things….tb continued

This is the first of our videos on retrofitting the Internet of Things to existing industries, such as factories, agriculture and cities.

Internet of Things

Retrofitting the Internet of Things to Industry

single phase as sine wave picture

Applying the Internet of Things (IOT) to Induction Motor Monitoring

Applying the Internet of Things (IOT) to Induction Motor Monitoring

Induction motors are found in all sorts of industries and applications, both on land and offshore.

Smaller Induction Motors (roughly drawing up to 10 Amps Full Load Current) most commonly use Direct Online Starting (D.O.L) methods.

Larger motors typically use starting methods such as Star-Delta starting, which keeps the starting current (surge / inrush) down.

The Internet of Things offers 24/7 monitoring of systems, which can intelligently react based on the input data provided by the networked sensors.

The main parameters of induction motors that could be measured are:-

Voltage (individual phase)

Current being drawn by motor.

Over current in individual phases, such as imbalances due to single phasing faults.

Phase Winding temperature based on measurement using thermistors.

Vibration Monitoring, indicating bearing failure.

Motor speed (inc comparison of actual to Synchronous field speed calculated speed).

What do we mean by the above parameters:-

Firstly lets consider the term, ‘Voltage (Individual Phase)’.

Voltage (individual phase)

The term ‘individual phase’ is applicable in three-phase supply systems.

Three-phase supplies are commonly used in industrial factories and workshops.

It is rare to have a three-phase supply in a domestic home.

To understand a three-phase supply, lets first consider a single-phase voltage supply.

In single-phase voltage systems (as found in most homes), an ac sine waveform ‘cycles’ above and below the centre zero volts level, at a frequency of 50 times a second.

This is known as 50 Hertz, or Hz, and is the supply frequency used in most, but not all, countries around the world.

single phase as sine wave picture

ac sine wave.

The picture above, shows a representation of an AC (Alternating Current) Sine Wave. The line through the middle would be zero volts, and as you can see the voltage rises and falls over time (time periods, starting at the left of the picture, and moving right).

For an AC voltage supply frequency of 50 Hz, 50 complete sine waves would be completed, per second.

Now that (hopefully) you understand what a sine wave is, you need to know that in a single-phase system, you have one sine wave, that goes up and down over time (as in above picture).

A three-phase voltage supply, has three sine waves at the same time. NOT ONE, BUT THREE!

Each of the three sine waves, is spaced 120 degrees apart, which means in plain English, that they rise and fall, at different times to each other.

For the purposes of Induction Motor Monitoring, you might want to monitor the phase wire, to check whether the voltage is on or off.

If the Induction Motor was a single-phase type, then obviously if the voltage supply was off, the motor would stop.

However, the single-phase motor may be tucked away from view, in a corner of the factory. Therefore being able to monitor the single individual phase supply, is still useful for an IOT induction motor monitoring system.

Being able to monitor all three voltage supply wires, to a three-phase induction motor, is even more useful.

If one of the three voltage supply wires, to the induction motor stopped supplying voltage, the motor would continue to run.

The motor would not run well on only two supply wires, but may go unnoticed, if in an out of the way location.

This is why using an IOT monitoring system, to detect the voltage of each of the three voltage supply wires, is useful.

Current being drawn by motor

Each Induction Motor will have a manufacturers specification for how much current is drawn, both at startup, and when fully running.

For more information on induction motor monitoring , get in touch.

(c) Craig Miles 2015-2020. All rights reserved. www.craigmiles.co.uk @acraigmiles

Internet of Things | Two Way Radio Wireless Communications – Yesway Communications