Skip to content

Quadrature Phase Shift Keying

Quadrature Phase Shift Keying (QPSK) is a digital modulation scheme that represents two bits of data per symbol. In QPSK, four different phase shifts of the carrier signal are used to encode the binary data. Each phase shift corresponds to a specific combination of two bits (00, 01, 10, and 11).

The term “quadrature” refers to the use of two carriers that are 90 degrees out of phase with each other. The QPSK modulation constellation diagram typically illustrates the four different phase positions.

Here’s a basic breakdown of how QPSK works:

  1. Mapping Bits to Phase Shifts:
    • 00 is represented by a 0-degree phase shift.
    • 01 is represented by a 90-degree phase shift.
    • 10 is represented by a 180-degree phase shift.
    • 11 is represented by a 270-degree phase shift.
  2. Transmission:
    • Each symbol represents two bits of information.
    • The carrier signal is modulated with the appropriate phase shift based on the two-bit data.

QPSK is used in various communication systems, including satellite communication, digital television, and some wireless communication standards. While Quadrature Phase Shift Keying provides a higher data rate compared to Binary Phase Shift Keying (BPSK), it is more susceptible to noise and interference than higher-order modulations like 16-QAM or 64-QAM.

Cart Summary
Subtotal: £0.00
Your Cart is currently empty.
Please log in to save and manage your Wishlist from any device. Your guest Wishlist is temporary and accessible only on this browser.
Remove from Wishlist
Remove from Comparison
Yesway Communications - Two Way Radio
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.